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Summary
This paper focuses on the automatic detection of hot spots on heterogenic roofscapes 
in high resolution airborne thermal imagery. Previous approaches to detect hot spots 
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required either emissivity corrected TIR-data or are only applicable to roofscapes 
with uniform roof materials. Here we present an automatic detection process using 
TIR-data without emissivity correction. To achieve this, every single roof and every 
roof material in the study area has to be acquired from remotely sensed imagery. 
This is obtained by using an object-based image classification approach based on 
orthophotos (RGB / IR) with sub-meter spatial resolution and a digital surface model. 
The hot spot detection is based on a two-step statistical criterion for every previously 
detected roof envelopes and roofing material. Firstly, the hottest spots on a roof are 
located by using a peak detection and secondly, a focal neighbourhood function is 
used to delimit thermal anomalies. The developed method was applied to TIR-data 
from the Thermal Airborne Broadband Imager (TABI-1800) with a spatial resolution 
of 0.6m x 0.6m. The results demonstrate that the developed method is applicable for 
heterogenic roofscapes, whereas the detection process highly depends on the roofs-
cape complexity.

Keywords:	 Airborne thermal imagery, TABI-1800, roof heat loss detection, hot spots, ob-
ject based classification

Zusammenfassung

Detektion thermaler Anomalien auf Dachflächen – ein automati-
siertes, fernerkundungsgestütztes Verfahren zur Verbesserung 
der Wärmeverlustanalyse mittels hochauflösender Infrarot-
thermographie
In diesem Beitrag wird eine automatische Detektion thermaler Anomalien (Hot Spots) in 
heterogenen Dachlandschaften (vor allem Dacheindeckungen) auf Basis von hochauf-
lösenden, flugzeuggetragenen Thermal-Daten präsentiert. Bisherige Ansätze benötigen 
dafür eine vorgeschaltete Emissionsgradkorrektur der Thermaldaten bzw. können nur in 
Gebieten homogener Dacheindeckung angewandt werden. Basierend auf einer exakten 
Ableitung von Flächen gleicher Dacheindeckungsmaterialien zeigt die Methode eine 
Möglichkeit der Hot Spot Detektion ohne diese vorgeschaltete Emissionsgradkorrektur. 
Für die Abgrenzung von unterschiedlichen Dachflächen- und Dacheindeckungsmateria-
lien kam dabei ein objektbasierter Bildanalyse-Ansatz auf Basis eines hochauflösenden 
Orthophotos (RGB / IR) und Oberflächenmodells zum Einsatz. Die eigentliche Detektion 
der Hot Spots in den Thermaldaten erfolgte einerseits durch Identifizierung jener Berei-
che, deren Temperaturwerte höher sind als alle den Bereich umgebenden, und zweitens 
durch eine Nachbarschaftsanalyse, wobei die zuvor abgeleiteten Dachflächen gleichen 
Materials als Begrenzungsflächen für die Nachbarschaftsanalyse herangezogen wurden. 
Die entwickelte Methode wurde auf Thermal-Daten des Thermal Airborne Broadband 
Imager (TABI-1800) mit einer räumlichen Auflösung von 0.6m x 0.6m angewandt. Die 
Ergebnisse zeigen die Eignung der Methode auf sehr heterogenen Dachlandschaften, 
aber auch den starken Einfluss komplexer Dachlandschaftsstrukturen auf den Detek-
tionsprozess. 
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1	 Introduction

Since urban energy efficiency has become increasingly important over the last years, air-
borne infrared thermal imagery of buildings and infrastructure are commonly used by 
public authorities in Northern America and Europe to run energy awareness-raising cam-
paigns and to detect leakages on roofs and building envelopes (e.g. Valente et al. 2019; 
Hemachandran et al. 2018; EnergyCity 2013; Hay et al. 2011; Savelyev and Suguma-
ran 2008; Allinson 2007). Thereby, false colour representations of thermal images are 
used to indicate heat loss by visual interpretation. These studies aim to raise the private 
house owners’ awareness to the energy (heat) dissipating from their houses into the atmos-
phere and subsequently develop and implement energy reduction strategies (e.g. improve 
the house’s roof insulation). 

Although thermal imagery provides valuable information about thermal behaviour of 
roofs, one must consider that a profound interpretation of thermal images is a difficult task 
(c.f. Vollmer and Möllmann 2011). An initial part in this inspection is the identification 
of potential leakages in roofs, the so-called hot spots. On thermal infrared images of roofs, 
hot spots generally do not only represent leakages but all high temperature peaks within 
the image. For example, in residential buildings they can correspond to roof windows, 
roof hatches, chimneys or drain waste ventilation pipes and in commercial buildings, hot 
spots can correspond to air condition and ventilation plants. Hot spots represent all ther-
mal diagnostic features on roofs. 

This paper focuses on this initial part of the roof inspection – the detection of hot spots. 
The most commonly used method for the identification of hot spots and thermal bridges 
is based only on the visual interpretation of false colour thermal infrared (TIR) images, 
acquired by thermal infrared cameras or scanners. This implicates several uncertainties. 
The visual interpretation of TIR images highly depends on the colour range and temper-
ature span that is used to display the data. Small scale roof structures may disappear due 
to large temperature spans. In contrast, lower temperature spans may exaggerate the ap-
pearance of the situation (c.f. Vollmer and Möllmann 2011). The most serious problem 
by interpreting TIR images arises from the infrared signal itself. The signal recorded by 
the sensor does not only contain surface temperature information. It is also influenced by 
the surface material properties (emissivity), atmospheric conditions (e.g. humidity), the 
radiation wavelength and other factors (e.g. surface geometry). 

Emissivity is the fraction of radiation of a measured object (at a given temperature) 
compared to the radiation emitted by a blackbody (with the same temperature) (Moro-
poulou et al. 2000). Emissivity values range from close to zero to close to one. In con-
trast to qualitative analysis, a quantitative analysis of heat loss on roofs requires kinetic 
temperature values. Hence, the emissivity values of all surfaces in the study area have to 
be known. Emissivity correction of TIR-data is a major issue in the quantitative analysis 
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of thermal images (c.f. Pour et al. 2019). In the case of roofs, the emissivity correction 
must also consider effects of weathered materials (c.f. clay brick, see Fig. 1b), oxidised 
surfaces (Holst 2000), surface structure (e.g. polished or roughened) and surface temper-
ature. Depending on these parameters the emissivity value of any roof material may vary 
significantly (Coutts et al. 2016). Especially metals are characterised by high emissivity 
fluctuations, ranging from 0.02 up to 0.8 (Vollmer and Möllmann 2011). In contrast, 
non-metallic surfaces, such as concrete or bricks have emissivity values greater than 0.8 
(Balaras and Argiriou 2002). The precise knowledge of the surface emissivity is nec-
essary to avoid significant temperature measurement errors (Madding 1999). In practice, 
the conversion from apparent temperatures to kinetic temperature is based on emissivity 
values reported in literature. The disadvantage here is, that literature emissivity values are 
(if for the respective surface material and wavelength available at all) extremely scattered 
and may change by more than 0.7 (Albaticia et al. 2013).

Additionally, the roofscapes in Graz are in general very heterogeneous. In most urban 
districts, it is not possible to determine one dominant roof cover material. In many cases 
even on a single roof, different roofing materials (metal and non-metal) are used. Addition-
al complexity arises from small roof flashing elements composed of copper, zinc and lead. 
These construction elements are mounted on dormers, roof valleys and ridges to protect 
the roof from water penetration. Assuming only one single emissivity value for a roof will 
therefore cause large errors in calculating kinetic temperature. To obtain accurate emis-
sivity values, direct in-situ measurements concurrently to the data recording are required. 
To ensure highest possible accuracy this has to be done for every roof material and for 
different weathering grades – a very time-consuming and expensive procedure.

To detect hot spots, additional data is required to delineate roofs and the different roof 
covering types within the TIR image. In this study we used a RGB / IR orthophoto with a 
spatial resolution of 0.25m x 0.25m to capture different roofing materials. Due to the high 
complexity of the roofing material in the study area, not all existing materials could be de-
tected with the acquired accuracy. However, even studies using hyperspectral data with high 
spatial resolution show that the delineation of roofing materials with different weathering 
grades is a difficult task. Uncertainties in urban land cover classification due to similar spec-
tral signatures are documented for slate, asphalt, and other low reflecting materials (Franke 
et al. 2009). Therefore, roof material classification and obtaining accurate emissivity values 
are considered as the major limiting factors in calculating kinetic temperatures.

The underlying assumption of roof heat loss detection is, that differences in temperature 
(thermal anomalies) are interpreted as potential heat flux due to poor or missing roof insu-
lation. An initial part of roof heat loss detection is the localisation of the hottest areas (hot 
spots) on roofs. We present an automatic GIS-based approach to detect hot spots on roofs. 
The major advantage of the presented method is that hot spots can be detected on hetero-
genic roofs without an upstreaming emissivity correction – an achieving improvement in the 
identification of possible hot spots and thermal bridges. The automatic hot spot detection 
uses ArcGIS geo-processing tools. To provide easy handling, the scripts are compiled to a 
tool box. Two test sites were selected to evaluate the hot spot detection tool. Those test sites 
are located in the surrounding area of the University of Graz (Austria) and represent a great 
variety of housing types and utilisation (residential buildings and commercial buildings). 
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2	 Methods 

We developed a GIS based automatic detection process for hot spots using a TIR image 
captured by the Canadian built TABI-1800 (Thermal Airborne Broadband Imager) sensor 
and RGB / IR orthophotos (UltraCam) to derive ancillary data (e.g. roof covering types 
and object boundaries). The TABI-1800 data used in this study was collected over the city 
of Graz (Austria) on December 20, 2011, in the early night about 4 to 6 hours after sunset 
(08.00 pm to 10.00 pm). The sensor acquired data in a spectral range of 3.7 to 4.8 µm with 
a spatial resolution of 0.6m x 0.6m and a thermal resolution of 0.05 °C. For the delineation 
of the roofs and the classification of the roofing materials a combination of UltraCamX 
data from summer 2011 and a therefrom derived digital surface model (DSM), both with 
a spatial resolution of 0.25m x 0.25m, were used (Sulzer et al. 2016).

2.1	 Data Preparation

The TIR-data not only contains thermally pure pixels, but also a certain degree of mixed 
pixels. They are typically located at the edges of the roofs as well as at the edges of differ-
ent roofing materials. 

Figure 1a demonstrates the complex mixing situation, a thermal image with 0.6m x 
0.6m spatial resolution among the edges of a roof and its possible origin. In the first case, 
the pixel value represents the average radiant temperature emitted by the roof surface and 
the heat flux ventilating through the eave (Fig. 1a, position 1). In the second case, the 
pixel value represents the average radiant temperature emitted by the roof surface and the 
neighbouring (ground-) surface (Fig. 1a, position 2). Thus, all pixels at the edge of the roof 
contain mixed temperature value and therefore mixed information of at least two surface 
materials (in this case brick and tarmac) with different emissivity values. Hence, the tem-
perature of this pixel is not representative for one of the two surfaces. 

Differences in temperature, boosted by emissivity effects, are clearly recognisable in 
Fig. 1b/c. The temperature difference between roofs and streets, and consequently the 
mixed pixel problem, will arise even after a precise emissivity correction (converting ap-
parent temperature to kinetic temperature by integrating material abilities to emit thermal 
radiation. In addition, sensor based effects, like FOV (field of view) and line of sight 
geometry effects as well as target based effects due to 3-D surface structure (e.g. inclined 
roof surface, flat ground) causing temperature fluctuations may occur (Christen et al. 
2012). The occurrence of such effects always has to be kept in mind, but is out of the scope 
of this paper. These types of errors along the roof edges can be considered as systematic 
errors. 

Figure 1b/c demonstrates the mixed pixel problem (boundary between tarmac and roof 
covering) surrounding the roof. It is shown that in this case the warmer apparent radiant 
temperature of the surrounding (mixed pixel) would be detected as hot spots when a reg-
ular automatic hot spot detection approach is used. Therefore, to avoid errors related to 
mixed pixels at the edge of features, a negative buffer (set to minus 1m) was applied to the 
vector layer of the building outlines (Fig. 1b/c).
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Source:	 Own calculation and design by the authors 

Fig. 1a: 	 Mixed pixel problem illustrated in the TIR image of Graz (TABI 1800, spatial 
resolution: 0.6m x 0.6m; no emissivity correction). 

Fig. 1b/c: 	Automatic building envelope extraction (purple line) and negative buffer (black 
line). 

Fig. 1b: 	 Orthophotograph, UltraCam, spatial resolution: 0.25m x 0.25m. The purple line 
demonstrates a strong visual fit of the automated building envelope extract-
ing process with the RGB image. Visible differences between weathered clay 
bricks and new roofed clay bricks can be determined. 

Fig. 1c: 	 TIR Image (TABI-1800, spatial resolution: 0.6m x 0.6m; no emissivity correc-
tion). The buffer distance of minus 1m (black line) proved to be adequate to 
exclude mixed pixels in the hot spot detection process.
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2.2	 Extraction of building envelopes and classification of the roofing materials

In addition to the roof surface temperature information from the TABI-1800 data, infor-
mation about all the different roofing materials of each building is needed to perform the 
hot spot analysis (section 2.3). To extract building envelopes as well as roof covering ma-
terials, an object-based image analysis approach (Blaschke et al. 2014; Poznanska et al. 
2013; Taubenböck et al. 2013), based on true colour orthophotographs (UltraCam) with 
sub-meter spatial resolution (0.25m x 0.25m) and a DSM (0.25m x 0.25m) derived from 
the UltraCam-data, was used (Kern 2015). The latter serves as the primary basis for the 
delineation of the building outlines. 

In the first step, buildings and other elevated objects were derived from the DSM 
based on height difference information and slope. First results were enhanced by including 
additional spectral surface information from the orthophotographs into the classification 
process. Vegetation covered, elevated objects like trees and high bushes could thereby be 
excluded and the edges of the buildings refined. On the basis of the results from the build-
ing delineation all surfaces but roofs could be excluded for the subsequent classification 
of the roof covering materials beforehand. To classify the different roofing materials a 
multiresolution segmentation algorithm was used to segment the roofs into objects with 
a minimum mapping unit (MMU) of 9 m2 and a minimum width of 2 m. The definition 
of the MMU and the minimum width was necessary due to the spatial resolution of 0.6 m 
of the TIR data. Hence, sheet metal installations and other small roof objects like small 
windows could not be captured as individual roof objects in this study. 

In the next step, the roof segments were classified into eight roof material classes (clay 
tile, fiber cement / slate, metal, cement, gravel / glass and other) on the basis of spectral 
information of the RGB / IR orthophotographs and surface information from the DSM. 
Buildings that were part of a block development and covered with the same roofing mate-
rial could not be automatically detected as individual buildings and needed to be separated 
manually. The accuracy of the roof material classification differed substantially depending 
on the type of material. For example, clay tile (with the exception of red painted metal 
roofs) achieved high classification accuracy. In contrast, fiber cement and slate covered 
roofs could not be classified in separate classes due to their spectral similarities. In some 
cases, it was also not possible to separate cement from gravel. Classification problems 
arose from metal roofs or roof parts, especially red painted metal roofs. This is a particular 
area of concern, because metals have substantially lower emissivity values than clay tiles. 
But the use of hyperspectral data for the classification of the roofing material here provides 
potential for future applications (Franke et al. 2009; Heiden et al. 2012).

2.3	 Hot Spot Detection Algorithm

We use a two-step approach, combining a peak detection which is based on hydrological 
modelling, and a statistical neighbourhood analysis. Two criteria must be met by the cell to 
be selected as a potential hot spot: (a) a positive identification as a temperature peak and (b) 
exceeding a certain operating temperature range. Inverse to the common used eight direction 
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flow model in hydrologic modeling (Jenson and Domingue 1988), each cell is coded in 
temperature difference to indicate the number of adjacent cells with lower temperatures. In 
the case when all eight neighbouring cells show lower temperature values than the processing 
cell, the processing cell is assigned as a potential hot spot (Fig. 2a). The algorithm neither 
depends on the magnitude of peak temperature nor on the temperature difference between 
peak and surrounding cells. Therefore, depending on the complexity of the roof objects (e.g. 
number of windows, vents or chimneys), the output of this first step contains a large number 
of extracted features – even though the detected potential hot spots within a distance of minus 
1m to the building envelope caused by mixed pixel effects have already been excluded. 

To enhance interpretation of these potential hot spots, a moving window overlapping 
neighbourhood focal function was used in the next step. These algorithms are usually 
used in geomorphologic modelling, like computing terrain characteristics or calculating 
topographic position indexes (Moore et al. 1991), but became more popular in other GIS 
analyses (e.g. Vienneau et al. 2009) over the last years. The algorithm assigns by cell by 
cell basis a new value for each processing cell as a function of the associated neighbouring 
cells. The information about the associated neighbouring cells is obtained by the shape 
and size of a moving window covering the processing cell and the neighbouring cells. 
Since neighbourhood identification is overlapping, cells can be assigned multiple times 
as neighbouring cells. In our case, the moving window has been specified as a circle (Fig. 
2b). The larger the moving window is set, the more frequently the neighbourhood statistic 
criterion is achieved and thus more potential hot spots are assigned as detected hot spots.

In general, hot spots on homogenous material (c.f. roofing cover) contrast with the sur-
rounding cells by a higher digital number (either apparent or kinetic temperature). Thus, 
hot spots depend on temperature differences with the neighbourhood cells. Problems arise 
by setting a statistical criterion without operating with true kinetic temperatures to assign a 
target cell as a hot spot. We calculate the neighbourhood statistic by setting the operator to 
range (calculation of maximum cell value minus minimum cell value in the predefined neigh-
bourhood). Finally, a threshold value (depending on the radiometric resolution of the TIR 
data) defines whether a potential hot spot is attributed as detected hot spot or not (Fig. 2c). 
Therefore, a model calibration (see below) must be carried out for every new TIR dataset. To 
avoid emissivity problems, we used the ancillary information of the automatically classified 
building envelopes, subdivided into the dominant roofing materials from the object-based 
image classification as zonal geometry for the algorithm. Thus, the neighbourhood statistic is 
calculated for every individual detected roofing material per building envelope. 

The greatest advantage of the method mentioned above is its applicability on apparent 
temperature TIR images. For example: Two roofs with the same kinetic temperature, one 
covered with roofing tiles, one with a metal roof coverage, do not have the same apparent 
temperature in the thermal infrared image. Due to the very low emissivity of metal, metal 
roof coverage appears much colder on uncorrected thermal images than tiled roofs. By 
setting an absolute temperature threshold value as criterion for the hot spot analysis with-
out a preceding emissivity correction, miscalculations of hot spots on coverage with low 
emissivity (e.g. metal) are unavoidable (c.f. Hemachandran 2013). The main steps of the 
algorithm are illustrated in Figure 2d. All calculations and algorithms are compiled in an 
ESRI ArcGIS Toolbox giving great flexibility for the application. 
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Source:	 Own design by the authors

Figure 2: 	 Illustration of the hot spot detection procedure 
Fig 2a:	 Temperature peak detection. A cell is assigned as potential hot spot when the digital 

numbers (apparent temperature) of all eight neighbouring cells show lower values than 
the processing cell. 

Fig 2b:	 Range detection – neighbourhood processing. The used focal statistic is overlapping. 
Fig 2c:	 Range definition and hot spot selection. Light blue indicates that the digital number of 

the cell is beneath the defined threshold value. Dark blue indicates that a cell fits the 
statistical criterion. If both criteria (peak detection and range threshold value) are met, a 
cell is assigned as a hot spot. 

Fig 2d:	 Flow Diagram of the hot spot detection algorithm. 
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2.4	 Model Calibration

The hot spot detection was calibrated by adjusting the parameters and comparing mod-
elled hot spots with observed data. For this purpose, heat loss areas from remote sensing 
data were manually detected and mapped. In addition, an in-situ inspection of the roof attic 
and measurement of thermal anomalies were carried out for selective buildings (Fig. 3). In 

Source:	 Photos taken by the authors

Figure 3:	 Model set-up
Fig. 3a:	 Examples of mapped reference thermal anomalies (position 1). The algorithm was ad-

justed iterative until almost all reference hot spots were detected. The metal roof instal-
lations and small roof flashing elements demonstrating the complexity of heterogenic 
roof coverings in the study area (positions 2 and 3). 

Fig. 3b:	 In-situ investigation in an insulated roof (position 5). The ventilation pipe is considered 
as potential thermal anomaly (position 4).
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an iterative procedure, the model parameters (neighbourhood of movable window diameter 
and range threshold, buffer of the selection) were then adjusted, whereby the observed data 
served as validation of the modelled hot spots. This calibration process was repeated until 
the model results matched the reference (observed) data as accurately as possible.

Due to the heterogeneous building structure in the study area, two different model 
settings have been applied to one single TIR image (one for residential buildings and one 
for large public or commercial buildings with a high number of ventilation plants). Due to 
the higher number of potential hot spots on complex roofscapes, the moving search radius 
must be enlarged on this type of building structures. In comparison, the search radius of 
the moving window on less complex roof constructions with a small count of hot spots 
that is typically found on single family detached houses is rather small. The finally used 
values are shown in Table 1. Depending on the spatial as well as the radiometric resolution 
of the TIR image, the model parameters have to be adjusted once again.

3	 Results

A comparison of the cadastral polygons with the results of the object-based image clas-
sification illustrates that the spatial accuracy has been improved. For example, crowns 
of (high) trees covering building envelopes could be excluded for the hot spot analysis. 
Furthermore, the required information on roofing cover material can be obtained (Fig. 
4a/b). This is of crucial importance as accurate delineated areas of homogeneous roofing 
materials as zonal geometry is mandatory for the hot spot detection algorithm. The buffer 
distance of minus 1m turned out to be suitable to reduce the mixed pixel problem (Fig. 1c). 

The accuracy of the object-based image classification was analysed by using a con-
fusion matrix with 500 automatically generated reference points. The results showed a 
very good overall classification accuracy of 91.4 percent and a kappa coefficient of 0.88. 
The weakest classification results are found in metal roofs. This is mainly due to the fact 
that metal roofs have very different spectral characteristics, depending on the material, 
lacquering and weathering. The problem was most obvious with red painted metal roofs 
that were misclassified as clay tiles. But also gravel and concrete roofs are often difficult 
to differentiate due to the spectral similarity of the materials.

Two test sites were selected to evaluate the hot spot detection tool. Those test sites are 
located in the surrounding area of the University of Graz (Fig. 4c, position 2 and 3) and 

Building 
structure TIR-Data Building 

envelope

Roof covering 
materials 
(classes)

Neighbour-
hood settings

Temperature
threshold 

value

Residential  
building TABI-1800 Object based  

classification 8 Circle; 2 cell 
units > 1.5 K

Commercial 
building TABI-1800 Object based 

classification 8 Circle; 3 cell 
units > 2.0 K

Table 1: 	 Model parameters



282	 Christian Bauer, Katharina Kern, and Wolfgang Sulzer

represent a great variety of house types and utilisation (residential buildings and commer-
cial buildings). 

The type “residential building” is exemplified on a perimeter block development (Fig. 
5) from the period of historicism (1840–1900). This type of architecture is typical for the 
district “Geidorf” in the City of Graz. The floor plan of this type of buildings typically 
consists of office spaces in the first two floors and residential space in the upper floors. 

Source:	 Own calculation and design by the authors

Figure 4: 	Result of the object-based image classification
Fig. 4a/b:	 Comparison of cadastral polygons and automatic delineated building envelopes. 
Fig. 4c/d:	 Classification of roof covering materials. Position 2 (commercial buildings) and Posi-

tion 3 (residential buildings) indicate the selected study sites.
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In contrast to the orthophotographs, the effects of emissivity on apparent temperature 
are clearly visible in the TIR image (Fig. 5a/b, position 6 and 7). Due to their very low 
emissivity, the minimum temperatures on the roofs are associated with metal surfaces 
(Fig. 5a/b, position 7). Like the neighbouring roofs, the material of position 6 (Fig. 5a/b) 
consists of clay brick. The sharp delineation on the TIR image (Fig. 5a) indicates rather 
specific emissivity properties of the roof material than an increased heat transfer. In fact, 
the interpretation of the thermal behaviour of this roof excluding effects of emissivity is 
impossible. 

The TIR-data of the entire roof in the west appears rather homogeneous. In general, 
very homogeneous temperature patterns on TIR-data are interpreted as an indication of 
well insulated roofs (c.f. Gulbe et al. 2017). The result of the detection process demon-
strates a strong correlation between the expected (e.g. roof windows, chimneys) hot spot 
and the modelled hot spots (e.g. Fig. 5a–d, position 1 and 2). 

The algorithm depicts every roof window as single hot spot. In spite of double and 
triple pane windows, roof windows usually indicate critical surfaces for energy loss. Due 
to neighbouring shadow effects and night sky radiant cooling (Vollmer and Möllmann 
2011), windows are “problematic features” on TIR images. In the case of the test site, 
building heights of the surrounding perimeter blocks are equal and therefore, neighbour-
ing shadow effects can be excluded. The maximum temperatures within the windows are 
located at the top edge of each roof window (Fig. 5c/d, position 2). One may conclude that 
these roof windows are displaying rather heat transfer than external influences. 

Like the windows, the detection process of hot spots related to chimneys shows a good 
fitting between the modelled hot spots and TIR-data/orthophotograph (e.g. Fig. 5a–d, posi-
tion 1 and 2). Due to the large difference in temperature between heated chimneys (c.f. TIR 
flight mission was taken out in December) and surrounding roofs, chimneys correspond to 
the hottest features on the roofs. The chimney at position 3 (Fig. 5a–c) demonstrates an er-
ror in the peak detection process. The TIR-data indicates a significantly higher temperature 
in the chimney area compared to the surrounding roof area. But the value of at least one of 
the eight surrounding cells is equal to the processing cell. Therefore, the algorithm does not 
exceed the required criteria. Position 4 (Fig. 5a–c) indicates that the chimney was not in 
service at the time of the thermal survey or it is even abandoned. The latter is not unusual 
for this type of building structure, since changes from local heating to central heating sys-
tems were typically conducted without removing the no longer used chimneys. An accurate 
delineation of those features (heated chimneys as well as roof windows) provides valuable 
additional information for inspection and diagnostics of buildings.

Lastly, position 5 (white dots in Fig. 5a/b) indicates hot spot delineation due to mixed 
pixel problems. As mentioned above these hot spots are finally eliminated by the minus 
1m building envelope buffer distance. 

The second test site is located on the campus of the University of Graz. The complex 
contains the main building of the University of Graz and the Graz University Library (Fig. 
6a-c). The main building was designed in the style of historicism and houses the auditori-
um for representational purposes (600 guests) as well as several institutes. The university 
library is attached to the main building. In 1970 the original library building was enlarged. 
Nowadays the structure houses a special media department for audio and video materials 
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and a catalogue room for online searches. Due to its size and use, the building is also rep-
resentative for a commercial building. 

Position 1 and 2 indicate a precise relationship between expected and detected hot spots (chimneys 
and roof windows). Position 3 and 4: Chimney which does not achieve the required algorithm crite-
ria. Position 5: Example of an excluded hot spot within the minus 1m buffer distance of the building 
envelope. 
Figure 5: 	Hot Spot detection within a perimeter block development 
Fig. 5a: 	 TIR image (TABI 1800, spatial resolution: 0.6m x 0.6m; no emissivity correction)
Fig. 5b: 	 Orthophotograph
Fig. 5c: 	 Oblique image, viewing direction W
Fig. 5d:	 Detail. Black dots indicate detected hot spots. White dots indicate excluded hot spots 

within the minus 1m buffer
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In contrast to the residential building mentioned above, the TIR image of this complex 
appears heterogeneous and reveals remarkable hot areas. Expected thermal bridges on the 
university library can be found within the glass roof of the main reading room (Fig. 6a/b, 
position 1). The single pane windows display poorly insulated areas and heat loss on the 
image. At least one hot spot on each glass construction is detected. 

The top floor of the open-access collections of the library contains many roof windows 
(Fig. 6a/b, position 2). In this wing, the peak detection delineates a large number of poten-

Figure 6:	 Hot spot detection at the main building of the University of Graz
Fig. 6a: 	 TIR image (TABI 1800, spatial resolution: 0.6m x 0.6m; no emissivity correction). The 

black dashed line marks the structural separation of the main building from the uni-
versity library. The black arrow indicates the viewing direction of the oblique picture 
(Fig. 6c). Black dots indicate detected hot spots. White dots indicate excluded hot spots 
within the minus 1m buffer. 

Fig. 6b: 	 Orthophotograph, viewing direction NW 
Fig. 6c: 	 Oblique picture
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tial hot spots. The extensive heat emission of the numerous small roof windows associated 
with the spatial resolution of 0.6m x 0.6m cause a smoothing effect on the TIR image. 
Thus, the assigned threshold value is not exceeded here. This makes it rather difficult to as-
sign single hot spots on roofs within complex infrastructure. For that reason, the algorithm 
has to be modified to get detailed information about potential hot spots of such complex 
roofs. This can be done by enlarging the radius of the moving search window. However, in 
this particular case, the geometric resolution of the TIR image was too coarse to delineate 
every single (small) roof window as single hot spot. An accurate detection of hot spots on 
such complex roofscapes (e.g. numerous windows) requires very high resolution TIR-data 
(< 0.5m x <0.5m). 

Position 3 (Fig. 6a/b) indicates the hot spot detection on an array of roof ventilation 
plants. These roof installations represent clearly definable features that can be found on 
many commercial buildings. In the present example, the spatial distance between ventila-
tors is large enough to delineate single ventilators as hot spots at a scale of 0.6m x 0.6m 
with high accuracy. 

The roofscape of the main building of the University of Graz (opened 1895) differs 
from the complex of the university library. Instead of complex modern roof installations, a 
large number of chimneys exists on this building. The roof hatches waste ventilation pipes 
and chimneys (Fig. 6a/b/c, position 6) are correctly detected by the algorithm. Based on 
apparent temperatures, the hottest position of the main building is situated at unroofed 
light shafts (Fig. 6a/b, position 7), indicating air movement (heat transfer) through the 
shaft. The dominant roof materials of the main building are slate tiles (Fig. 6a/b/c, position 
4) and, in lesser extent, metal (Fig. 6a/b/c, position 5). 

The effects of different emissivity are clearly visible on the thermal image. One may 
expect linear structures on thermal image due to sheet metal installations in contrast to the 
surrounding roof coverage (Fig. 6a/b/c, position 8). Without emissivity correction, metal 
surfaces appear cooler due to their material properties (c.f. Fig. 6a/b/c, position 4 and 5). 
Interestingly, even on apparent temperature the metal surface at position 8 is displayed as 
warm. 

The algorithm assigns hot spots on each sheet metal installation. Without in-situ in-
vestigation, these structures are difficult to interpret. It may be assumed that the metal 
installation is tracing thermal bridge above the underlying staircase. Such hot spots are 
considered as point of interests for further investigations regarding waste heat loss.

4	 Discussion

The presented method to automatically detect hot spots on roofs in TIR (thermal infrared) 
images uses apparent temperatures only. To assign a cell as a potential hot spot, two crite-
ria must be fulfilled: positive peak detection and achieving the predefined range of temper-
ature within a specified neighbourhood. The settings of the algorithm have to be calibrated 
to different TIR data and building structures. The perimeter of the moving window and the 
range threshold value of the neighbourhood analysis strongly depends on the spatial and 
radiometric resolution of the TIR data as well as on the building structure. The required 
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information on building envelopes and especially on roofing cover materials are obtained 
by applying an image based object classification approach. 

We propose two different model settings: one for residential buildings with less com-
plex roof installations, and one for commercial buildings with complex roof installations 
(c.f. Fig 6. a/b, position 2). The latter is designed to detect more hot spots with high density 
(e.g. ventilation plants). To avoid errors related to mixed pixels at the edge of the building 
envelopes, it is suggested to use a negative buffer distance around the features. The dis-
tance depends on the spatial resolution of the TIR data and the ancillary building envelope 
data. In this study a distance of minus 1m has been proved to be sufficient to exclude all 
mixed pixels along the edges. The result of the hot spot detection serves as a basis for 
subsequent detailed in-situ roof inspections. 

The method is applicable to complex building structures with heterogeneous roof cov-
erings that can be found in most European cities – a great advantage of the method. Exist-
ing studies and methods were developed in comparatively young cities and buildings with 
homogenous roof materials. The study of Hay et al. (2011) consists of detached single-unit 
houses with uniform roof materials (e.g. asphalt shingles). Due to the spatial resolution of 
the utilised TIR image (1m x 1m), Hay et al. (2011) assume no impact of different surface 
emissivity (different roofing materials) of objects smaller than 1m on the hot spot detec-
tion. Therefore without emissivity correction, differences in temperature are interpreted as 
heat flux. In their approach the hot spot detection is based on the following criteria: The six 
hottest positions on the roof with a minimum distance of 2–4 pixel (1m x 1m resolution) 
each and the six hottest locations along the building envelope with 1 pixel perimeter. 

In contrast to many Northern American cities, the historical development of European 
cities led to complex building structures and to heterogeneous roofscapes with a great di-
versity of roof materials. Therefore, some assumptions of the elaborated method from the 
study of Hay et al. (2011) are not applicable to European cities. In this study a TIR image 
with 0.6m x 0.6m spatial resolution is used. We point out that emissivity of sheet metal 
installations has a significant impact on the TIR image. This effect is clearly recognisable 
on Fig 6a/b (position 9). The v-shaped linear structure, displaying cool temperatures, cor-
responds to the sheet metal installations on the roof. Considering low emissivity values of 
metal, this effect is so far not surprising, but it demonstrates the problems in interpreting 
TIR images of complex roofscapes. Firstly, the spatial resolution of 0.6m x 0.6m is high 
enough that different emissivity of small scale features on the roof can have an influence 
on the pixel values of the TIR image. Secondly, the assumption that every temperature 
change without emissivity correction can be interpreted as heat flux will lead to misinter-
pretation of the thermal situation of the building. Thirdly, emissivity correction of such 
small scaled features will prove to be a difficult task. As mentioned above, even with 
hyperspectral data with high resolution the delineation of these small structures may be 
impossible. Coming back to Fig 6a/b (position 9): there is no evidence for increased heat 
flux of the slate roof compared to the metal roof. 

Due to the construction and the utilisation of the buildings, the roofscape of the city of 
Graz can be categorised as thermally complex. For example, a high number of chimneys 
due to local heating, large window panes, numerous roof windows and ventilation plants 
on commercial buildings result in a high number of hot spots. Thus, a limitation of the 
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maximum number of hot spots (as purposed in the study of Hay et al. 2011)) is not appli-
cable for complex building structures (c.f. Fig. 6a–d). 

Heat loss detection based on airborne thermal imagery is still subject to uncertainties. 
The method presented in this paper is suitable for the initial assessment of TIR images of 
roofs – the detection of potential hot spots on roofs. Nevertheless, there is a host of limit-
ing factors and errors affecting the analysis: 
(a)	Although the algorithm is not depending on emissivity corrected data – ancillary in-

formation to delineate the different roofing cover materials is necessary. Hot spots at 
the boundaries of different roofing cover materials cannot be detected precisely due to 
the mixed pixel effects. The extent of the boundary depends on the spatial resolution 
of the TIR data; for the TIR-data used in this study (0.6x0.6m), a buffer of 1m proved 
to be sufficient. As a consequence, for roofs with a variety of roofing cover materials, 
large scale areas are excluded from the analysis;

(b)	If the roofing cover materials cannot be delineated precisely (e.g. areas < MMU), er-
rors may also occur at their boundaries: large temperature differences due to emissivity 
properties (e.g. metal and clay bricks) may increase the number of detected hot spots 
because the defined static criterion of the neighbourhood operation (range) is frequent-
ly complied. The radiometric resolution of the UltraCam data used in this study also 
limits a more distinct differentiation of the roofing materials (e.g. different weathering 
conditions of clay tiles). This could be improved by using hyperspectral data (which is 
not available for the city of Graz);

(c)	Potential errors also arise from the combination of data sets recorded at different times. 
For example, the UltraCam data was recorded in July 2011, but the TIR data was re-
corded in December 2011. A period of six months in dynamically developing cities can 
already effect major changes (e.g. new constructions, modifications of existing build-
ing fabric). This could be improved by recording both thermal and optical data as close 
to each other (due to the required night flight for TIR-data surveys it is not possible to 
record them simultaneously);

(d)	A challenge of the presented method is the required calibration process. In addition to a 
manual mapping of hot spots on the TIR data, valid model results also require a set of 
in-situ inspections of the top attic rooms. In contrast to public buildings, getting access 
to private buildings is more difficult; 

(e)	Limiting factors in TIR-data acquisition: (i) High-resolution airborne thermography 
surveys of entire urban areas require a high number of (overlapping) flight-lines. The 
data acquisition with the TABI-1800 sensor for the city of Graz (approximately 125 
km2) has required 20 flight-lines. Radiometric variations between flight-lines often 
cause errors in the mosaic data-set (this is also valid for the data used in this study). 
Recently, Rahman et al. (2015) demonstrate that these effects can be reduced by a 
using of relative radiometric normalisation techniques. (ii) Due to Lambert-behaviour 
of emitting surfaces, radiation measured at the sensor strongly depends on the view-
ing angle. Maximum radiation is observed from normal direction, oblique direction 
>40-45° leads to declining radiation. The magnitude of this effect is also a function 
of material (Vollmer and Möllmann 2011). Thus, the impact on remote sensed TIR 
images depends on (1) viewing geometry, (2) field of view, (3) roof material, (4) roof 
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slope, (5) roof exposition, (6) sensor wavelength, (7) temperature (air, surface, sky), 
(8) atmospheric effects, and (9) sensor calibration.
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