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Zusammenfassung

Automatisierte Identifizierung von Bombenkratern und ihrer 
potenziellen Position

LiDAR-Daten werden im Allgemeinen für archäologische, geographische und geolo-
gische Zwecke verwendet. In der modernen Archäologie erfolgte die Rekonstruktion von 
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Verteidigungslinien des Zweiten Weltkriegs durch Objektidentifikation und Kartierung. 
Die Erkennung und Identifizierung von Bombenkratern mithilfe von LiDAR-Daten kann 
diesen Rekonstruktionsprozess unterstützen. Das größte Problem ist in diesem Zusammen-
hang die Handhabung der enormen Zahl an dadurch ermittelten relevanten Daten. Daher 
besteht ein großer Bedarf, den gesamten Prozess der Detektion und Identifizierung zu 
automatisieren. In diesem Beitrag werden automatisierte Methoden vorgestellt, die entwi-
ckelt wurden, um die Detektion zu erleichtern und die relevanten Räume zu identifizieren 
und einzugrenzen. Darüber hinaus kann diese Methode auch bei anderen Aufgaben an-
gewendet werden, z.B. bei Grabhügelerkennung oder zur Kartierung von Dolinen (Doli-
ne-Mapping).

Schlagwörter: GIS, LiDAR, Bildverarbeitung, Bombenkrater, Rekonstruktion militäri-
scher Objekte, Archäoinformatik, Neuzeitarchäologie

Summary
LiDAR (Light Detection and Ranging) data are generally used for archaeological, ge-

ographical, and geological purposes. In modern age archaeology, military object identifi-
cation and mapping are used to reconstruct World War II defense lines. This article argues 
that this reconstruction process can be supported by detecting and identifying the location 
of bomb craters using LiDAR data. Because of the large amount of such relevant data and 
the issues associated with their management, there is a need to automate the entire process 
of detection and identification. This article presents and discusses the methods that have 
been developed for this automation. These methods could also be applied for different 
research objectives using LiDAR data, such as to detect the location of burial mounds and 
to carry out mapping of doline formations.

Keywords: GIS, LiDAR, image processing, bomb craters, military object reconstruction, 
modern age archaeology

1 Introduction

Much research is based on the detection and identification of local significant elevation 
differences on the ground surface. For example, various archaeological objects (e.g. burial 
mounds), modern archaeological and military historical sites (e.g. bomb craters), and even 
certain typical geomorphological forms and phenomena (e.g. dolines) are often similar 
in shape and differ only in their size. GIS (Geographic Information System) and remote 
sensing technologies have been successfully applied to reconnaissance, identify and ana-
lyse these kinds of field objects. Furthermore, large amounts of high quality 3D data are 
available even free of charge, thanks to recent changes in data policies.

Excavations of burial mounds and places are the key research focus in traditional ar-
chaeology, because the funeral artefacts could reveal the relationships, habits and eth-
nicities of the people who had lived in the investigated area (Grammer et al. 2017). In 
geomorphological studies that focus on karstic areas, the investigation of doline forma-
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tions plays a key role. Their morphometric characteristics (area, perimeter, depth, round-
ness, compactness, horizontal stretching, ratio of the depth and perimeter, azimuth of 
the fore-axis) together with the territorial characteristics (number and density of dolines, 
doline distribution) are used to describe the investigated area (Telbisz et al. 2016). Fur-
thermore, GIS is also effective in examining various surface erosion types (Wigand and 
Geitner 2010).

Nowadays, LiDAR (Light Detection and Ranging) is one of the most frequently used 
technologies in data acquisition procedures. Billions of 3D ground-points can be gathered, 
even in vegetation covered areas. Laser scanners are widely used for a variety of appli-
cations, including engineering (Berényi 2010) pedestrian detection (Barsi et al. 2016), 
supporting autonomous vehicle mapping (Barsi et al. 2017), and even examining trees in 
dormancy (Zlinszky et al. 2017). 

The LiDAR technology can also be integrated into historical military object recon-
struction. Identification and map creation of the fortification elements are essential parts 
of a 20th century military object-, environmental- and event-reconstruction (Juhász and 
Neuberger 2016). Besides the visualisation and analysis of these fortified objects that 
remained, special risk and bomb maps can also be created, which can reveal unexploded 
bombs close to them (Marchionni et al. 2013). Previously published research on similar 
topics has reported the almost exclusive use of archive aerial photographs. Machine learn-
ing based algorithms (Brenner et al. 2018) and Marked Point process (Kruse et al. 2017) 
were developed and applied to detect bomb craters on images. To our knowledge, LiDAR 
based bomb crater detection methods have not been published yet, but there is an example 
of LiDAR data based crater detection (Salamunićcar and Lončarić 2008).

In the future, LiDAR data could be used as the nationwide topographic core data, 
thanks to the rapidly evolving technology (Virtanen et al. 2017). Since 2015, Geiger 
mode LiDAR data is also available for commercial use (Stoker et al. 2016); these data 
can produce more accurate and denser point clouds much faster (up to 1000 km2/hour) 
than the conventional linear LiDAR. However, this large amount of data also has chal-
lenges in the processing phases.

Our aim was to find an efficient method to process huge amounts of heterogeneous 
data in the GIS environment through a military example. During this research, an auto-
mated procedure was developed. It is able to select areas of interest from a large amount 
of integrated geodata and efficiently identify and count bomb craters with minimal user- 
interaction. Previous versions of the methods have been published (Neuberger et al. 
2017; Juhász and Neuberger 2018), and now the details of the further improvements 
are presented in this article. Finally, some examples are shown for the more general use 
of these methods. 

2 Data sources and software

Data sources used in World War II military object mapping have been mostly archive 
aerial photographs combined with field measurements. However, shadows of objects, 
clouds and poor quality of the images can make the research more challenging. Con-
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versely, high resolution elevation data and precise DTMs (Digital Terrain Models) can 
be derived from airborne laser scanning (ALS) measurements, which can eliminate these 
difficulties. Because of these advantages, both the area selection and crater detection pro-
cedures are based on ALS data. Online links for hundreds of gigabytes of LiDAR data 
are now accessible thanks to the German pilot project made by North Rhine-Westphalia 
state (OpenGeodata NRW 2016). During the potential area selection procedure, LiDAR 
and OSM data (OpenStreetMap 2018) were downloaded for the German sample districts 
(Emmerich am Rhein; Rheine). Considering the accuracy of the forest mapping (uncertain 
border lines), the OSM database quality is adequate for this research, but it could be re-
placed with other digital topographic data.

The ArcGIS Model Builder was used to automate spatial data processing (ArcGIS 
ModelBuilder 2018). In this application, the models can be workflows that string together 
sequences of geo-processing tools, and the procedure can be executed several times with-
out interaction by the user.

3 Adaptive potential area selection

For investigating large territories, the key task is to reduce the areas of interest as much 
as possible. Selecting specific areas to examine World War II objects is a challenging task, 
because these objects have disappeared in most places. During the decades since, urban 
areas have been rebuilt, new settlements have been established, infrastructure has been de-
veloped, and agricultural activities have covered former trenches, craters, and other signs 
of the war. These objects have only been preserved in forests and wooded areas (Merler 
et al. 2005), and therefore, these areas were the focus of the research.

The procedure first involved downloading LiDAR and OSM data for a single state, 
and then, as part of pre-processing, the original datasets were adjusted for size and format. 
The UTM (Universal Transversal Mercator) reference system of the LiDAR data was 
used as the projection system of the process. The .xyz file format of the LiDAR data was 
transformed into .laz format, which resulted in radical file size reduction (Isenburg 2013). 
The OSM ‘forest’ layer was selected and 1 × 1 km vector tiles were created from the .laz 
header files. 

The development had two stages; the previous process worked effectively for those 
areas where the ratio of the wooded areas was relatively low to total investigated areas. 
Testing the Emmerich am Rhein sample data (6% forest coverage) the original data was 
reduced to 30%, but when checking the Rheine dataset (20% forest coverage) with the 
same method, the remaining data was still 75% of the original data (Juhász and Neu-
berger 2018). The unified tile-size based calculation was the main disadvantage of the 
method, because a significant number of non-categorisable areas was left even after the 
morphological cleaning; thus the methodology was further improved. In the next stage of 
development, information content of files was already considered. The aim was to elimi-
nate the non-informative areas in the dataset by adjusting tile creation. This was achieved 
by dividing the files that had low information content into smaller tiles. The adaptive tile 
selection optimised the ratio of the informative to noninformative areas (Fig. 1).
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The processing stages for adaptive tile creation were:

1. Downloading and pre-processing the OSM and LiDAR files;
2. Creating 1 × 1 km tiles from the LiDAR header files;
3. Intersecting the OSM ‘forest’ layer and the 1 km2 tiles;
4. Creating raster masks with vector-raster conversion, where the forested areas are pre-

sented by black, and the non-informative areas by white;
5. Excluding empty raster masks from the process;
6. Calculating the masks’ areas from the minimum boundary boxes of the forested areas;
7. Revising the masks: the masks with low forest ratio (compared to a threshold e.g 20%) 

were divided into four parts, and the masks with the high forest ratio (compared to the 
same threshold) were kept;

8. Repeating the process from the second stage with 500 × 500 m tiles, and if required 
with even smaller tiles, until each mask meets the forested/nonforested area ratio 
threshold.

9. Deleting masks or masks’ parts that consist of a smaller size of ‘forest’ pixel clusters 
than the size of a crater. As a result, the number of investigated masks and the size of 
the masks were decreased (Fig. 2).

Source:  Own images based on own process

Figure 1:  Mask creation (a: 1 km2 tile; b: 0.25 km2 tile; c: adaptive mask)
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4 Identification of bomb craters

Following the selection of the areas of interest, the next objective was to develop a 
process to identify bomb craters automatically. The five key stages of bomb crater detec-
tion are described below (stages 1–5) (Neuberger et al. 2017), and three new stages were 
added to the published process to increase efficiency (stages 6–8). Finding the optimal 
combination of the stages and refining the parameters also improved the previous version 
of the method. The earlier stages, without details, are:

1. Creating raster DTM with 1 × 1 m horizontal resolution by kriging from LiDAR 
ground points;

2. Creating a smoothed trend surface by multiple use of 3 × 3 mean filter;
3. Subtracting the original DTM from the trend surface;
4. Creating a binary image based on the elevation difference threshold; 
5. Cleaning the binary image of the noise and objects that are too large, and using mor-

phological filters.

Checking circularity and distance transformation were also applied in the improved 
method; 1 m DTM resolution was considered, because the optimal values depend very 
heavily on DTM resolution.

6. Non-circular objects were excluded in order to reduce the number of falsely detected 
craters. The circularity of an object was calculated from the ratio of its area and the 
square of its perimeter. The circularity of a perfect circle has a value of 0.08; during 
this stage values between 0 and 0.07 were checked, and the optimal value was defined 
as 0.03. 

7. Morphological filters (erosion, dilatation and their combinations, opening and closing) 
were applied as filters to reduce noise, separate individual and joint elements, and 
identify intensity bumps and holes. During the improvement, the parameters and the 
combination of the filters and the steps were also examined.

8. Distance transformation was also applied to differentiate overlapping elements. Each 
pixel of the binary image was marked with the distance to the nearest boundary pixel. 
Selecting higher values lead to the best results. 

Source:  Own images based on own process

Figure 2:  Decreasing the mask’s size by deleting the small ‘forest’ pixel cluster 
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Qualification of the crater detection process was based on a comparison with a refer-
ence layer. The reference layer was carried out by a human expert using visual interpre-
tation method. The confusion matrix (Heipke et al. 1997) shows the rate of similarity and 
dissimilarity (Table 1). If the centroid of an extracted crater is located inside a reference 
crater, then the matrix value is “True Positive” (TP). If the extracted crater centroid is not 
located in a reference crater, then the value is “False Positive” (FP). Finally, if a reference 
crater remains undetected, then the value is a “False Negative” (FN). Three indicators 
(equations 1–3) were calculated from the values of the confusion matrix:

5 Results

The results of the improved adaptive area selection algorithm application on the 
“Rheine” dataset are shown in Table 2 – which was the test area with higher forest cover-
age – examined in the study (approximately 186 km2). 

The values in the first row were calculated with a 1 km2 tile size, using the previously 
published method (presented in Fig. 1a); these were considered as reference values. In 
this case, empty tiles were deleted from the original 186 pieces, so the remaining 179 tiles 
contained the potential areas for selection. Applying the previous method, the investigated 
area was decreased to 75 % of the original (Table 2 – Area %), while the ratio of the for-
ested to nonforested areas (Table 2 – Forested area %) was almost unchanged. The usable 
mask area was approximately 27% of the remaining tiles.

Table 2 also shows the results of further stages of the new adaptive process. Each tile 
was split into four smaller tiles, if the ratio of the forested areas was under the threshold 

Completeness =
TP

(1)
Number of reference craters

Correctness =
TP

(2)
TP + FP

Quality =
TP

(3)
FP+Number of reference craters

 Extraction

Reference
Object No Object

Object TP FN

No Object FP TN

Source:  Heipke et al. 1997

Table 1:  The confusion matrix  
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values (indicated in the Threshold column). Different threshold values were tested with 
minimum 500 m or 250 m tile sizes. The values in the Area and Usable masks’ area col-
umns improved as the threshold value increased, while the number of the investigated tiles 
also rose. 

In the bomb crater detection methods, the circularity and distance transform were 
the two additional stages in the developed procedure (see above in the description of the 
process design). When applying these stages, the optimisation of the relevant parameters 
was the main challenge. It has been previously demonstrated that applying only the first 
30 smoothing steps and using threshold values between 5 and 15 are adequate to detect 
craters (Neuberger et al. 2017) (cf. Table 3). Therefore, these parameter intervals were 
tested in the first sample area, and the changes in mean values of quality features were 
analysed.

Thresh-
old (%) 1000 500 250 Sum Area 

(%)
Forested 
area (%)

Usable 
mask’s 

area (%)

Reference – 179  0  0  179 74.9 99.994 26.7

10 139 127  0  266 65.8 99.996 30.3

10 139  42  83  318 64.3 99.996 31.1

20  93 285  0  378 59.6 99.998 33.5

20 93 161  379  633 53.7 99.998 37.2

30 56 417  0  473 56.4 99.998 35.4

30 56 167  777 1000 46.2 99.998 43.2

40 35 488  0  523 55.1 99.996 36.2

40 35 151 1065 1251 42.7 99.999 46.8

50 25 522  0  547 54.7 99.996 36.5

50 25 108 1288 1493 41.0 99.999 48.7

Source:  Own calculation

Table 2:  Result of the improved adaptive method compared to the previous one (1st row)

Input parameters Tested values Optimal values

Resolution 10, 25, 50, 100, 200 cm 50 – 100 cm

Threshold 1 – 45 cm ~10% of the estimated depth 
of the craters (5 – 15 cm)

Smoothing steps 1 – 500 10 – 30

Source:  Own calculation

Table 3:  Tested and optimal parameters during bomb crater detection
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The increasing mean value of correctness is shown in Figure 3, in the case of circular-
ity examination. The 0.03 point can be defined as optimal circularity, because correctness 
had almost maximum value, and beyond this point values for completeness and quality 
significantly decreased. 

Source:  Own image based on own process

Figure 3:  Testing the circularity parameter in Salzgitter area

Source:  Own image based on own process

Figure 4:  Testing the distance transformation parameter in Salzgitter area
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The results of the tests of the distance transformation parameter are shown in Fig-
ure 4. The completeness (hence the quality) was improved until 2.5 – 3 m pixel sizes, 
while correctness did not change. Completeness started to decrease above these values, 
because the smaller FP and TP craters were removed; thus the correctness improved. 

The results of the improved crater identification processes from three different sample 
areas are presented in Table 4. The number of reference craters (as defined by a human 
expert) is shown in the second column. The parameters (thresholds, number of smoothing 
iterations) were optimised in the first sample area but not in the second and third. As a 
result, there were notable differences between the first, second, and third areas, because 
the sizes and the depths of the craters were significantly smaller. Finally, Figure 5 shows 
the original DTM (left side) and the identified craters (right side) of the “Salzgitter” test 
area. The developed algorithm detected 31 craters (represented with pink points) from the 
33 reference craters.

Source:  Own images based on own process

Figure 5:  The result of the crater detection in test area Salzgitter  

Test area Reference 
craters TP FP Complete-

ness (%)
Correct-
ness (%)

Quality 
(%)

Salzgitter 33 31 0 93.9 100.0 93.9

Rheine1 56 47 4 83.9  92.2 78.3

Rheine2 37 27 21 73.0  56.2 46.6

Source:  Own calculation

Table 4:  The results of the improved crater detection algorithm
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6 Discussion

In this section, the particular description and justification of the adaptive tile crea-
tion-based process and its methodological contribution are discussed. First, the key aim 
of the process was to decrease the number of valid investigated areas and processing 
time. With the developed adaptive tile selection procedure, it was possible to identify 
the appropriate tile size and number to meet the study’s research objectives. Tile size 
and number are significant factors, because they have the potential to slow down the 
algorithm in different ways. Firstly, tile size influences processing time of a single ras-
ter. Secondly, a high number of tiles can increase running time of the entire algorithm, 
because of multiple reading-writing tasks. An additional feature and contribution of 
the developed procedure is that it provides an efficient way to eliminate small pixel 
clusters.

The first selected sample area (Emmerich am Rhein) was approximately 146 km2, 
which could be investigated either as 146 pieces of 1 km2 tiles or as 584 pieces of 0.25 km2 
tiles. In the former case, there were 5 million points in a LiDAR file, which could lead to 
significant processing issues. In the latter case, however, there were 1.5 million points per 
0.25 km2 tile, which made point cloud managing easier at the tile level. 

The forest coverage was only 6% in this first sample investigation, which meant that 
the procedure had to involve a significant area reduction. The processed area was there-
fore reduced to 18% (0.5 km2 tiles) and to 30% (1 km2 tiles) of the original area. The 
second sample area (Rheine) had larger forested parts. During this second sample inves-
tigation, the downloaded file size was twice as large as in the first case (4.9 GB vs. 10.7 
GB), but the total area was only 30% larger (approximately 186 km2). The ratio of the 
forested areas was three times higher (circa 20%). As a result of the larger wooded areas, 
the reduction value was proportionally changed to 55% (0.5 km2 tiles) and to 75% (1 km2 
tiles). These values could still be considered as a significant decrease, especially in the 
case of the smaller tiles. 

The adaptive mask creation process was also applied in the second sample area. 
There were two notable results in this case. Firstly, very similar results were produced 
by the method compared to the 0.5 km2 tile based method; however, the number of files 
processed was lower (547 instead of 615 files). While the number of processed files is 
strongly dependent on the size of the investigated territory and the ratio of the forested 
to nonforested areas, the running time was reduced by the use of adaptive masking. Sec-
ondly, although the amount of potential area to be investigated decreased (40%), there 
was a significant increase in file numbers, due to the use of smaller 250 × 250 m tile sizes 
applied in this case. Apart from the examination of the masking methods, pixel cluster 
elimination thresholds were also investigated. The maximum cluster size was set as 1, 
2, and 3 craters’ of area. 

Overall, the results demonstrate the following findings:
1. More effective masks can be achieved with smaller tiles, but the number of files can 

increase significantly.
2. The initial size of the tile has the most influence on the procedure’s efficiency.
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3. Contrary to expectations, eliminating small pixel clusters at the beginning of the pro-
cess or continuously during the procedure has not improved efficiency; it was sufficient 
to execute this step once, at the end of the algorithm. Furthermore, the elimination of 
the various pixel cluster sizes (50–300 pixel) has not led to significant differences in 
the results.

4. The most important advantage of the adaptive mask creation process was that non- 
informative tiles and tiles’ parts could be eliminated continuously during the procedure.

5. The number of investigated files could be controlled by considering the optimal tile 
size and ratio of the effective mask areas to total mask areas.

6. Theoretically, the process has no limitation regarding the tile size. The ratio of the 
effective mask areas could be set from 0% to 100%. 

After selecting areas of interest, the bomb crater detection was the next step. To ana-
lyse the two stages of the developed process, it is worth noting the results of the original 
algorithm (Table 5). The comparison of the two tables (Table 4 and Table 5) reveal signifi- 
cant differences in the number of FP craters. Improving the procedure, eliminating the FP 
craters (circularity), and separating the overlapping craters (distance transformation) were 
also executed in test area 1. There were no overlapping craters in the other two test areas, 
but the investigation of circularity radically decreased the number of FP craters, as it was 
shown in Table 4. 

As it was previously demonstrated, the developed algorithm works efficiently in the 
test areas; but there are several limitations, that can hinder in achieving appropriate results. 
Firstly, the amount of data can be critical, for example according to our experiences, the 
ArcGIS has a 200 files limit in processing, which can make difficulties in case of nation-
wide investigation. Considering the crater detection process, overlapping or asymmetri-
cally filled up craters, craters with significantly different sizes in the same location, and 
craters situated on linear objects (e.g. road, dam) still pose serious problems.

7 Application

As it was mentioned previously, risk mapping is one of the potential applications of 
detected bomb craters, where these maps represent various levels of risk. The aim of the 

Test area Reference 
craters TP FP Complete-

ness (%)
Correct-
ness (%)

Quality 
(%)

Salzgitter 33 28 3 84.9 90.3 77.8

Rheine1 56 35 65 62.5 35.0 28.9

Rheine2 37 27 246 73.0  9.9  9.5

Source:  Own calculation

Table 5:  The tested and the optimal parameters
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risk maps is to inform the user about the spatial distribution of potential hazardous terri-
tories within the investigated area. Nowadays, unexploded bombs may still pose a serious 
threat. According to previous publications (Brenner et al. 2018), approximately 10% of 
all dropped bombs have not exploded. In several cases, the location of these unexploded 
bombs can be identified on archive photographs, but the accessibility of photo archives 
and the photos’ quality are limited.

Regarding typical users’ needs (archaeologists, sappers, bomb squads) the risk map 
is grid based and coloured according to the hazard level. The colour red represents the 

Source:  Own images based on own process

Figure 6:  Risk map creation with various grid sizes
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Source:  Own images based on own process

Figure 7:  The DTM (upper), the result of crater detection (middle) and the risk map (lower) 
of Rheine1 test area
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most dangerous territories, where more carters can be found. To increase the efficiency 
of bomb sweeping, it is recommended to begin the work at these areas. Yellow represents 
the territories where exactly one crater is situated. Regarding safety considerations, all 
neighboring grids in proximity to the red grids are also coloured yellow. Furthermore, if 
a single bomb crater was situated near to any of the grid’s edge (inside a 10 m buffer), the 
neighboring grid connected to this particular edge was also filled with yellow. The remain-
ing safe grids were coloured green. 

Various grid resolutions were investigated and the 50 m resolution was proven to be 
optimal. On the one hand, in the case of higher resolution, the sizes of the areas to be 
swept were too small, compared with practical experiences. Additionally, narrow (10–20 
m wide) “green” corridors can appear (Fig. 6), which cannot be considered safe areas be-
cause of their size. On the other hand, the use of lower resolution resulted in overly large 
hazardous grids, and in practice the cost of the investigation and cleaning of these areas 
grows radically.

Naturally, the automated process can be applied with various resolutions, according to 
the users’ needs, and the size of the used map section can also be considered. If the map 
section’s size is not perfectly divisible by the grid size (to give a whole number quotient), 
then the algorithm begins the process from the center of the map section as it shown lower 
right corner of Figure 6. Finally, the images of Figure 7 show the results of major stages 
during the whole process.

8 Conclusion and future research

The detection and identification of various historic military objects can support the 
reconstruction of fortresses or defense lines, and the creation of risk maps. The tradi-
tional method of military object interpretation was slow and inefficient. The aim of 
this research was to create a procedure based on previous studies, which allows the 
refined selection of potential areas for investigation from very large datasets. There 
were several improvements carried out in order to increase the efficiency compared 
to the previous research stages. The base tile size was reduced, according to the size 
of the potential areas, and unnecessary tiles were deleted in different stages using the 
developed procedure. 

Using this method, the amount of data to be processed was reduced by 40–55% in the 
case of the test areas. Using the reduced and selected areas, DTMs could be generated. The 
craters’ morphometry, circularity and distribution within these DTMs were considered 
automatically in the developed crater detection procedure. The detection and identification 
of the bomb craters worked efficiently in the test areas, but the process was influenced by 
specific parameters. The bomb crater maps can be used in various applications. An auto-
mated risk map creation process was developed, that is able to consider the potential users’ 
needs (resolution, size of map section). 

Future research plans include to automate the whole process, from data download-
ing to detecting craters, creating risk maps as well as improving the efficiency of the 
algorithms. This method can be applied not only to forested areas, but to any OSM 
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layer. For example, it could be used for settlement and building layers, for the creation 
of 3D city models, or even for estimating of potential solar energy production, based on 
rooftop models (Szabó et al. 2016). Additionally, single layer data are not the only type 
of possible input data for the process. Generated buffer zones or the results of a GIS 
analysis or queries could also be used as input data. Finally, the crater detection proce-
dure could also be used in other morphometric parameter-based tasks, such as doline 
formation or burial mound mapping.
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